Citation

4918 total record number 290 records this year

Akt-1 and Akt-2 Differentially Regulate the Development of Experimental Autoimmune Encephalomyelitis by Controlling Proliferation of Thymus-Derived Regulatory T Cells

Ouyang, S;Zeng, Q;Tang, N;Guo, H;Tang, R;Yin, W;Wang, A;Tang, H;Zhou, J;Xie, H;Langdon, WY;Yang, H;Zhang, J;

Akt isoforms play key roles in multiple cellular processes; however, the roles of Akt-1 and Akt-2 isoforms in the development of T cell-mediated autoimmunity are poorly defined. In this study, we showed that Akt1-/- mice develop ameliorated experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis, whereas Akt2-/- mice develop exacerbated EAE, compared with wild-type mice. At the cellular level, Akt-1 appears to inhibit proliferation of thymus-derived regulatory T cells (tTregs), which facilitates Ag-specific Th1/Th17 responses. In a sharp contrast to Akt-1, Akt-2 potentiates tTreg proliferation in vitro and in vivo and suppresses Ag-specific Th1/Th17 responses. Furthermore, treating mice with established EAE with a specific Akt-1 inhibitor suppressed disease progression. Our data demonstrate that Akt-1 and Akt-2 differentially regulate the susceptibility of mice to EAE by controlling tTreg proliferation. Our data also indicate that targeting Akt-1 is a potential therapeutic approach for multiple sclerosis in humans. Copyright 2019 by The American Association of Immunologists, Inc.