Citation

4917 total record number 289 records this year

The bile acid-activated retinoic acid response in dendritic cells is involved in food allergen sensitization

Wu, R;Yuan, X;Li, X;Ma, N;Jiang, H;Tang, H;Xu, G;Liu, Z;Zhang, Z;

Background

Alteration of commensal microbiota is highly correlated with the prevalence of allergic reactions to food in the gastrointestinal tract. The mechanisms by which microbiota modulate food allergen sensitization in the mucosal site are not fully understood.

Methods

We generate DCs specific knockout of retinoic acid receptor α (Rara) gene mice (DC KO Rara) to evaluate food sensitization. The bile acid-activated retinoic acid response was evaluated by flow cytometry, real-time RT-PCR and Illumina transcriptome sequencing. The global effect of Abx treatment on BA profiles in the mucosal lymph tissue mLN in mice was examined by UPLC-MS analysis.

Results

In this study, we demonstrate that depletion of commensal gut bacteria leads to enhanced retinoic acid (RA) signaling in mucosal dendritic cells (DCs). RA signaling in DCs is required for the production of food allergen-specific IgE and IgG1. Antibiotics induced an enlarged bile acid (BA) pool, and dysregulated BA profiles contributed to enhanced RA signaling in mucosal DCs. BA-activated RA signaling promoted DC upregulation of interferon I signature, RA signature, OX40L, and PDL2, which may lead to T helper 2 differentiation of CD4+ T cells. BA-activated RA signaling involved the farnesoid X receptor and RA receptor α (RARa) interaction. Depletion of bile acid reduces food allergen specific IgE and IgG1 levels in mice.

Conclusion

Our research unveils a mechanism of food sensitization modulated by BA-RA signaling in DCs, which suggests a potential new approach for the intervention of food allergic reactions.