Citation

4945 total record number 0 records this year

Research on Detection of Ultra-Low Concentration Anthrax Protective Antigen Using Graphene Field-Effect Transistor Biosensor

Liang, T;Chen, J;Yan, R;Jiang, H;Li, H;

Protective antigen (PA) is an important biomarker for the early diagnosis of anthrax, and the accurate detection of protective antigen under extremely low concentration conditions has always been a hot topic in the biomedical field. To complete the diagnosis of anthrax in a timely manner, it is necessary to detect PA at extremely low concentrations, as the amount of PA produced in the early stage of anthrax invasion is relatively small. Graphene field-effect transistor (Gr-FET) biosensors are a new type of material for preparing biosensors, with the advantages of a short detection time and ultra-low detection limit.The effect of different concentrations of diluents on the affinity of PA monoclonal antibodies was determined via an ELISA experiment. Combined with the Debye equation, 0.01 × PBS solution was finally selected as the diluent for the experiment. Then, a PA monoclonal antibody was selected as the bio-recognition element to construct a Gr-FET device based on CVD-grown graphene, which was used to detect the concentration of PA while recording the response time, linear range, detection limit, and other parameters.The experimental results showed that the biosensor could quickly detect PA, with a linear range of 10 fg/mL to 100 pg/mL and a detection limit of 10 fg/mL. In addition, the biosensor showed excellent specificity and repeatability.By constructing a Gr-FET device based on CVD-grown graphene and selecting a PA monoclonal antibody as the bio-recognition element, a highly sensitive, specific, and repeatable Gr-FET biosensor was successfully prepared for detecting extremely low concentrations of anthrax protective antigen (PA). This biosensor is expected to have a wide range of applications in clinical medicine and biological safety monitoring.