Citation

4973 total record number 1 records this year

A novel organic cation transporter involved in paeonol transport across the inner blood-retinal barrier and changes in uptake in high glucose conditions

Gyawali, A;Kim, MH;Kang, YS;

Paeonol exerts various pharmacological effects owing to its antiangiogenic, antioxidant, and antidiabetic activities. We aimed to investigate the transport mechanism of paeonol across the inner blood-retinal barrier both in vitro and in vivo. The carotid artery single injection method was used to investigate the retina uptake index of paeonol. The retina uptake index (RUI) value of [³H]paeonol was dependent on both concentration and pH. This value decreased significantly in the presence of imperatorin, tramadol, and pyrilamine when compared to the control. However, para-aminohippuric acid, choline, and taurine had no effect on the RUI value. Conditionally immortalized rat retina capillary endothelial cells (TR-iBRB cell lines) were used as an in vitro model of the inner blood-retinal barrier (iBRB). The uptake of [³H]paeonol by the TR-iBRB cell lines was found to be time-, concentration-, and pH-dependent. However, the uptake was unaffected by the absence of sodium or by membrane potential disruption. Moreover, in vitro structural analog studies revealed that [³H]paeonol uptake was inhibited in the presence of organic cationic compounds including imperatorin, clonidine and tramadol. This is consistent with the results obtained in vivo. In addition, transfections with OCTN1, 2 or plasma membrane monoamine transporter (PMAT) small interfering RNA did not affect paeonol uptake in TR-iBRB cell lines. Upon pre-incubation of these cell lines with high glucose (HG) media, [3H]paeonol uptake decreased and mRNA expression levels of angiogenetic factors, such as hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) increased. However, after the pretreatment of unlabeled paeonol in HG conditions, the mRNA levels of VEGF and HIF-1 were comparatively reduced, and the [3H]paeonol uptake rate was restored. After being exposed to inflammatory conditions induced by glutamate, TNF-α, and LPS, paeonol and propranolol pretreatment significantly increased the uptake of both [3H]paeonol and [3H]propranolol in TR-iBRB cell lines compared to their respective controls. Our results demonstrate that the transport of paeonol to the retina across the iBRB may involve the proton-coupled organic cation antiporter system, and the uptake of paeonol is changed by HG conditions.