Citation

4724 total record number 96 records this year

CaMK4-dependent activation of AKT/mTOR and CREM- underlies autoimmunity-associated Th17 imbalance

Koga, T;Hedrich, CM;Mizui, M;Yoshida, N;Otomo, K;Lieberman, LA;Rauen, T;Crispn, JC;Tsokos, GC;

Tissue inflammation in several autoimmune diseases, including SLE and MS, has been linked to an imbalance of IL-17-producing Th (Th17) cells and Tregs; however, the factors that promote Th17-driven autoimmunity are unclear. Here, we present evidence that the calcium/calmodulin-dependent protein kinase IV (CaMK4) is increased and required during Th17 cell differentiation. Isolation of naive T cells from a murine model of lupus revealed increased levels of CaMK4 following stimulation with Th17-inducing cytokines but not following Treg, Th1, or Th2 induction. Furthermore, naive T cells from mice lacking CaMK4 did not produce IL-17. Genetic or pharmacologic inhibition of CaMK4 decreased the frequency of IL-17-producing T cells and ameliorated EAE and lupus-like disease in murine models. Inhibition of CaMK4 reduced Il17 transcription through decreased activation of the cAMP response element modulator (CREM-) and reduced activation of the AKT/mTOR pathway, which is known to enhance Th17 differentiation. Importantly, silencing CaMK4 in T cells from patients with SLE and healthy individuals inhibited Th17 differentiation through reduction of IL17A and IL17F mRNA. Collectively, our results suggest that CaMK4 inhibition has potential as a therapeutic strategy for Th17-driven autoimmune diseases.