4410 total record number 100 records this year

Carbon nanotube recognition by human Siglec-14 provokes inflammation

Yamaguchi, SI;Xie, Q;Ito, F;Terao, K;Kato, Y;Kuroiwa, M;Omori, S;Taniura, H;Kinoshita, K;Takahashi, T;Toyokuni, S;Kasahara, K;Nakayama, M;

For the design and development of innovative carbon nanotube (CNT)-based tools and applications, an understanding of the molecular interactions between CNTs and biological systems is essential. In this study, a three-dimensional protein-structure-based in silico screen identified the paired immune receptors, sialic acid immunoglobulin-like binding lectin-5 (Siglec-5) and Siglec-14, as CNT-recognizing receptors. Molecular dynamics simulations showed the spatiotemporally stable association of aromatic residues on the extracellular loop of Siglec-5 with CNTs. Siglec-14 mediated spleen tyrosine kinase (Syk)-dependent phagocytosis of multiwalled CNTs and the subsequent secretion of interleukin-1β from human monocytes. Ectopic in vivo expression of human Siglec-14 on mouse alveolar macrophages resulted in enhanced recognition of multiwalled CNTs and exacerbated pulmonary inflammation. Furthermore, fostamatinib, a Syk inhibitor, blocked Siglec-14-mediated proinflammatory responses. These results indicate that Siglec-14 is a human activating receptor recognizing CNTs and that blockade of Siglec-14 and the Syk pathway may overcome CNT-induced inflammation.