Citation

4945 total record number 0 records this year

Cutting Edge: Serpine1 Negatively Regulates Th1 Cell Responses in Experimental Autoimmune Encephalomyelitis

Akbar, I;Tang, R;Baillargeon, J;Roy, AP;Doss, PMIA;Zhu, C;Kuchroo, VK;Rangachari, M;

Th1 cells are critical in experimental autoimmune encephalomyelitis (EAE). Serine protease inhibitor clade E1 (Serpine1) has been posited as an inhibitor of IFN-γ from T cells, although its role in autoimmunity remains unclear. In this study, we show that Serpine1 knockout (KO) mice develop EAE of enhanced severity relative to wild-type (WT) controls. Serpine1 overexpression represses Th1 cell cytokine production and pathogenicity, whereas Serpine1-KO:2D2 Th1 cells transfer EAE of increased severity in comparison with WT 2D2 Th1 cells. Notably, polarized Serpine1-KO Th1 cells display delayed expression of the Th1-specific inhibitory receptor, Tim-3 (T cell Ig and mucin–domain containing-3). Serpine1-KO:Tim-3-Tg Th1 cells, which transgenically overexpress Tim-3, showed increased expression of IFN-γ and reduced expression of the checkpoint molecules Lag-3 and PD-1 relative to WT Tim-3-Tg counterparts. Furthermore, Serpine1 deficiency restored the EAE phenotype of Tim-3-Tg mice that normally develop mild disease. Taken together, we identify Serpine1 as a negative regulator of Th1 cells.