3991 total record number 0 records this year

Depletion of CD11c+ dendritic cells in apolipoprotein E-deficient mice limits angiotensin II-induced abdominal aortic aneurysm formation and growth

Krishna, SM;Moran, CS;Jose, RJ;Lazzaroni, S;Huynh, P;Golledge, J;

The role of chronic inflammation in abdominal aortic aneurysm (AAA) is controversial. CD11c+ antigen-presenting cells (APCs) (dendritic cells (DCs)) have been reported in human AAA samples but their role is unclear. The effect of conditional depletion of CD11c+ cells on experimental AAA was investigated in the angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mouse model. CD11c-diphtheria toxin (DT or D.tox) receptor (DTR), ovalbumin (OVA) fragment aa 140-386, and enhanced green fluorescent protein (eGFP)-ApoE-/- (CD11c.DOG.ApoE-/-) mice were generated and CD11c+ cell depletion achieved with D.tox injections (8 ng/g body weight, i.p., every-other-day). AAA formation and growth were assessed by measurement of supra-renal aortic (SRA) diameter in vivo by serial ultrasound and by morphometry assessment of harvested aortas at the end of the study. Depletion of CD11c+ cells by administration of D.tox on alternative days was shown to reduce the maximum diameter of AAAs induced by 28 days AngII infusion compared with controls (D.tox, 1.58 0.03 mm vs Vehicle control, 1.81 0.06 mm, P<0.001). CD11c+ depletion commencing after AAA establishment by 14 days of AngII infusion, was also shown to lead to smaller AAAs than controls after a further 14 days (D.tox, 1.54 0.04 mm vs Vehicle control, 1.80 0.03 mm, P<0.001). Flow cytometry revealed significantly lower numbers of circulating CD44hi CD62Llo effector CD4 T cells, CD44hi CD62Llo effector CD8 T cells and B220+ B cells in CD11c+ cell-depleted mice versus controls. CD11c+ depletion attenuated SRA matrix degradation indicated by decreased neutrophil elastase activity (P=0.014), lower elastin degradation score (P=0.012) and higher collagen content (P=0.002). CD11c+ cell-depletion inhibited experimental AAA development and growth associated with down-regulation of circulating effector T cells and attenuated matrix degradation. The findings suggest involvement of autoreactive immune cells in AAA pathogenesis. 2019 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.