Citation

4724 total record number 96 records this year

Inhibition of S. aureus a-hemolysin and B. anthracis lethal toxin by b-cyclodextrin derivatives

Karginov VA, Nestorovich EM, Schmidtmann F, Robinson TM, Yohannes A, Fahmi NE, Bezrukov SM, Hecht SM

Many pathogens utilize the formation of transmembrane pores in target cells in the process of infection. A great number of pore-forming proteins, both bacterial and viral, are considered to be important virulence factors, which makes them attractive targets for the discovery of new therapeutic agents. Our research is based on the idea that compounds designed to block the pores can inhibit the action of virulence factors, and that the chances to find high affinity blocking agents increase if they have the same symmetry as the target pore. Recently, we demonstrated that derivatives of beta-cyclodextrin inhibited anthrax lethal toxin (LeTx) action by blocking the transmembrane pore formed by the protective antigen (PA) subunit of the toxin. To test the broader applicability of this approach, we sought beta-cyclodextrin derivatives capable of inhibiting the activity of Staphylococcus aureus alpha-hemolysin (alpha-HL), which is regarded as a major virulence factor playing an important role in staphylococcal infection. We identified several amino acid derivatives of beta-cyclodextrin that inhibited the activity of alpha-HL and LeTx in cell-based assays at low micromolar concentrations. One of the compounds was tested for the ability to block ion conductance through the pores formed by alpha-HL and PA in artificial lipid membranes. We anticipate that this approach can serve as the basis for a structure-directed drug discovery program to find new and effective therapeutics against various pathogens that utilize pore-forming proteins as virulence factors.