4291 total record number 1 records this year

Inhibitory and excitatory amino acid neurotransmitters are utilized by the projection from the dorsal deep mesencephalic nucleus to the sublaterodorsal nucleus REM sleep induction zone

Liang, CL;Quang Nguyen, T;Marks, GA;

The sublaterodorsal nucleus (SLD) in the pons of the rat is a locus supporting short-latency induction of a REM sleep-like state following local application of a GABAA receptor antagonist or kainate, glutamate receptor agonist. One putatively relevant source of these neurotransmitters is from the region of the deep mesencephalic nucleus (DpMe) just ventrolateral to the periaquiductal gray, termed the dorsal DpMe (dDpMe). Here, the amino acid neurotransmitter innervation of SLD from dDpMe was studied utilizing anterograde tract-tracing with biotinylated dextranamine (BDA) and fluorescence immunohistochemistry visualized with laser scanning confocal microscopy. Both markers for inhibitory and excitatory amino acid neurotransmitters were found in varicose axon fibers in SLD originating from dDpMe. Vesicular glutamate transporter2 (VGLUT2) represented the largest number of anterogradely labeled varicosities followed by vesicular GABA transporter (VGAT). Numerous VGAT and VGLUT2 labeled varicosities were observed apposed to dDpMe-labeled axon fibers indicating both excitatory and inhibitory presynaptic, local modulation within the SLD. Some double-labeled BDA/VGAT varicosities were seen apposed to small somata labeled for glutamate consistent with being presynaptic to the phenotype of REM sleep-active SLD neurons. Results found support the current theoretical framework of the interaction of dDpMe and SLD in control of REM sleep, while also indicating operation of mechanisms with a greater level of complexity.