Citation

4945 total record number 0 records this year

Molecular patterns from a human gut-derived Lactobacillus strain suppress pathogenic infiltration of leukocytes into the central nervous system

Sanchez, JMS;Doty, DJ;DePaula-Silva, AB;Brown, DG;Bell, R;Klag, KA;Truong, A;Libbey, JE;Round, JL;Fujinami, RS;

Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects 2.5 million people worldwide. Growing evidence suggests that perturbation of the gut microbiota, the dense collection of microorganisms that colonize the gastrointestinal tract, plays a functional role in MS. Indeed, specific gut-resident bacteria are altered in patients with MS compared to healthy individuals, and colonization of gnotobiotic mice with MS-associated microbiota exacerbates preclinical models of MS. However, defining the molecular mechanisms by which gut commensals can remotely affect the neuroinflammatory process remains a critical gap in the field. We utilized monophasic experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice and relapse-remitting EAE in SJL/J mice to test the effects of the products from a human gut-derived commensal strain of Lactobacillus paracasei (Lb). We report that Lb can ameliorate preclinical murine models of MS with both prophylactic and therapeutic administrations. Lb ameliorates disease through a Toll-like receptor 2-dependent mechanism via its microbe-associated molecular patterns that can be detected in the systemic circulation, are sufficient to downregulate chemokine production, and can reduce immune cell infiltration into the central nervous system (CNS). In addition, alterations in the gut microbiota mediated by Lb-associated molecular patterns are sufficient to provide partial protection against neuroinflammatory diseases. Local Lb modulation of the gut microbiota and the shedding of Lb-associated molecular patterns into the circulation may be important physiological signals to prevent aberrant peripheral immune cell infiltration into the CNS and have relevance to the development of new therapeutic strategies for MS.