4664 total record number 37 records this year

Neuronal activity and microglial activation support corticospinal tract and proprioceptive afferent sprouting in spinal circuits after a corticospinal system lesion

Jiang, YQ;Armada, K;Martin, JH;

Spared corticospinal tract (CST) and proprioceptive afferent (PA) axons sprout after injury and contribute to rewiring spinal circuits, affecting motor recovery. Loss of CST connections post-injury results in corticospinal signal loss and associated spinal activity. We investigated the role of activity loss and injury on CST and PA sprouting. To understand activity-dependence after injury, we compared CST and PA sprouting after motor cortex (MCX) inactivation, produced by chronic MCX muscimol microinfusion, with sprouting after a CST lesion produced by pyramidal tract section (PTx). Activity suppression, which does not produce a lesion, is sufficient to trigger CST axon outgrowth from the active side to cross the midline and to enter the inactivated side of the spinal cord, to the same extent as PTx. Activity loss was insufficient to drive significant CST gray matter axon elongation, an effect of PTx. Activity suppression triggered presynaptic site formation, but less than PTx. Activity loss triggered PA sprouting, as PTx. To understand injury-dependent sprouting further, we blocked microglial activation and associated inflammation after PTX by chronic minocycline administration after PTx. Minocycline inhibited myelin debris phagocytosis contralateral to PTx and abolished CST axon elongation, formation of presynaptic sites, and PA sprouting, but not CST axon outgrowth from the active side to cross the midline. Our findings suggest sprouting after injury has a strong activity dependence and that microglial activation after injury supports axonal elongation and presynaptic site formation. Combining spinal activity support and inflammation control is potentially more effective in promoting functional restoration than either alone. Copyright 2019. Published by Elsevier Inc.