Citation

3928 total record number 199 records this year

Serotonin transporter phosphorylation modulated by tetanus toxin

Najib A1, Pelliccioni P, Gil C, Aguilera J.

Tetanus toxin (TeTx) modifies Na(+)-dependent, high-affinity 5-hydroxytryptamine (5-HT, serotonin) uptake in a synaptosomal-enriched P(2) fraction from rat brain. The effect corresponds to a rapid and non-competitive uptake inhibition, and it is preceded by induction of phospholipase C (PLC) activity and translocation and down-regulation of the classical protein kinase C (PKC-alpha, -beta and -gamma) isoforms. The effects on serotonin transport and on cPKC activation were similar to the effects exhibited by phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Moreover, after treatment with TeTx, an increase in Ser- and Tyr-specific phosphorylation was found. Activation of PKC by both TeTx and TPA results in a loss of transport capacity and serotonin transporter (SERT) phosphorylation, which are abolished by coapplication of the specific PKC inhibitor bisindolylmaleimide-1. Since a specific PLCgamma1 phosphorylation prior to TeTx's inducing SERT phosphorylation was found, the studies suggest that part of the action of TeTx consists of modifying the signal cascade initiated in tyrosine kinase receptors on nerve tissue previous to its cellular internalization, resulting in transporter phosphorylation.