4291 total record number 1 records this year

Short peptide type I interferon mimetics: therapeutics for experimental allergic encephalomyelitis, melanoma, and viral infections

Ahmed, CM;Johnson, HM;

The classical canonical model of interferon (IFN) signaling focuses solely on the activation of STAT transcription factors, which limits the model in terms of specific gene activation, associated epigenetic events, and IFN mimetic development. Accordingly, we have developed a noncanonical model of IFN signaling and report the development of short type I IFN peptide mimetic peptides based on the model. The mimetics, human IFN1(152-189), human IFN(150-187), and ovine IFN(156-195) are derived from the C-terminus of the parent IFNs and function intracellularly based on the noncanonical model. Vaccinia virus produces a decoy IFN receptor (B18R) that inhibits type I IFN, but the IFN mimetics bypass B18R for effective antiviral activity. By contrast, both parent IFNs and mimetics inhibited vesicular stomatitis virus. The mimetics also possessed anti-tumor activity against murine melanoma B16 tumor cells in culture and in mice, including synergizing with suppressor of cytokine signaling 1 antagonist. Finally, the mimetics were potent therapeutics against experimental allergic encephalomyelitis, a mouse model of multiple sclerosis. The mimetics lack toxic side effects of the parent IFNs and, thus, are a potent therapeutic replacement of IFNs as therapeutics.