Citation

4724 total record number 96 records this year

Sphingomyelin synthase activity affects TRIF-dependent signaling of Toll-like receptor 4 in cells stimulated with lipopolysaccharide

Prymas, K;witkowska, A;Traczyk, G;Ziemliska, E;Dziewulska, A;Ciesielska, A;Kwiatkowska, K;

Bacterial lipopolysaccharide (LPS) is recognized by CD14 protein and the Toll-like receptor (TLR)4/MD2 complex localized in the plasma membrane of immune cells. TLR4 triggers two signaling pathways engaging the MyD88 and TRIF adaptor proteins which lead to production of various pro-inflammatory cytokines. These processes are likely to be modulated by sphingomyelin, as the CD14 – TLR4 interaction takes place in plasma membrane rafts enriched in this lipid. To verify this assumption, we analyzed the influence of tricyclodecane-9-yl xanthogenate (D609), which was proven here to be an SMS inhibitor, and silencing of sphingomyelin synthase (SMS) 1 and/or SMS2 on LPS-induced signaling in macrophages. LPS up-regulated the expression and activity of SMS while exposure to D609 or silencing of SMS1 and SMS2 counteracted this action and led (except for SMS2 silencing) to a depletion of sphingomyelin in cells. Concomitantly, the MyD88- and TRIF-dependent signaling pathways of TLR4 were inhibited with the latter being especially sensitive to the reduction of the SMS1 and/or SMS2 activity. The D609 treatment and SMS1 and/or SMS2 depletion all reduced the level of CD14 protein in cells, which likely was an important determinant of the reduction of the LPS-induced pro-inflammatory responses. Copyright 2019 Elsevier B.V. All rights reserved.