Have a specific question about your LBP project? Click below and let’s get started.
Neuroscience Letters
Sands, SA;Tsau, S;LeVine, SM;
Iron accumulates in the CNS of patients with multiple sclerosis, but our understanding of the mechanism accounting for this accumulation is unclear. Mouse models of cerebral experimental autoimmune encephalomyelitis (EAE) in C57BL/6 and SJL mice were used together with a histochemical stain for iron and immunohistochemical stains for transferrin receptor, synaptophysin, iron regulatory protein 1 (IRP1) and/or IRP2 to investigate the role of disease activity on CNS iron metabolism. The expression of transferrin receptor, but not IRP1 or IRP2, increased in the medial habenula, which is adjacent to the third ventricle, in response to both types of cerebral EAE. In the habenula, the elevated expression of transferrin receptor in C57BL/6 mice with cerebral EAE was generally restricted to the medial habenula while the expression in SJL mice with cerebral EAE was more diffusely expressed. Iron levels were increased in all regions of the habenula in C57BL/6 mice with cerebral EAE, and in the medial and medial lateral but not the lateral habenula in SJL mice with cerebral EAE. Synaptophysin, which has been observed previously in endocytic vesicles together with the transferrin receptor, was concentrated at the medial habenula, but its levels did not increase with disease in C57BL/6 mice with cerebral EAE. Our results support the model that the medial habenula responds to disease activity by upregulating transferrin receptor to facilitate the movement of iron into the brain from the third ventricle, raising the possibility that a similar mechanism accounts for iron accumulation in deep gray matter structures in patients with multiple sclerosis.