4749 total record number 121 records this year

Increased affinity and solubility of peptides used for direct peptide ELISA on polystyrene surfaces through fusion with a polystyrene-binding peptide tag.

Kogot, JM;Sarkes, DA;Val-Addo, I;Pellegrino, PM;Stratis-Cullum, DN;

Peptide reagents can serve as alternatives or replacements to antibodies in sensing or diagnostic applications. The passive adsorption of peptides onto polystyrene surfaces can limit the target binding capability, especially for short, positively charged, or hydrophobic sequences. In this report, we show that fusing a peptide with a previously characterized 12-amino acid polystyrene binding sequence (PS-tag) improves overall peptide solubility and enzyme-linked immunosorbent assay (ELISA) results using the peptide as a capture agent. Specific improvements for protective antigen (PA; Bacillus anthracis) protein binding peptides selected from bacterial surface display were compared with native or biotinylated peptides. The PS-tag was added to either peptide terminus, using a (Gly)(4) spacer, and comparable binding affinities were obtained. Fusion with the PS-tag did not have any negative impact on peptide secondary structure as measured by circular dichroism. The addition of the PS-tag provides a convenient method to utilize peptide reagents from peptide display libraries as capture agents in an ELISA format without the need for a biotin tag or concerns about passive adsorption of critical residues for target capture.