Citation

4724 total record number 96 records this year

Protease activated receptor-1 antagonist ameliorates the clinical symptoms of experimental autoimmune encephalomyelitis via inhibiting breakdown of blood-brain barrier

Kim, HN;Kim, YR;Ahn, SM;Lee, SK;Shin, HK;Choi, BT;

To evaluate the question of whether protease activated receptor-1 (PAR-1) antagonist is a potential therapeutic target in multiple sclerosis, we treated experimental autoimmune encephalomyelitis (EAE) mice with two PAR-1 antagonists, KC-A0590 and SCH-530348. Treatment with both antagonists resulted in a significant decrease in the clinical characteristics of EAE mice by suppressing demyelination and infiltration of inflammatory cells in the spinal cord and brain, as well as a significantly reducing the increased thrombin and tumor necrosis factor-. Profound leakage of dextran was observed in the brain of EAE mice. However, treatment with PAR-1 antagonists resulted in the stabilization of vascular endothelial cells and reduced blood-brain barrier breakdown with suppression of inflammatory response. Treatment with PAR-1 antagonists also resulted in down-regulated expression of matrix metalloproteinase-9 and preserved expression of occludin and zonula occludens (ZO)-1 in the brain and their significant expression was confirmed in neurons, astrocytes, and vascular endothelial cells. Finally, endothelial cells and primary cultured astrocytes were treated with PAR-1 antagonists; both antagonists suppressed thrombin-induced breakdown of ZO-1 in endothelial cells and secretion of matrix metalloproteinase-9 in astrocytes. Collectively, our results suggest that PAR-1 antagonist is effective in attenuation of the clinical symptoms of EAE mice by stabilizing the blood-brain barrier and may have therapeutic potential for treatment of multiple sclerosis.