Blog

Staphylococcal Enterotoxin Type B (SEB) Toxin in Research

July 11, 2018

By: douano@listlabs.com

By: Karen Crawford, PhD.
President, List Labs

Staphylococcal bacteria

Staphylococcal bacteria

What Is Staphylococcal Enterotoxin Type B (SEB)?

Staphylococcal enterotoxin type B (SEB) is a powerful player in the family of toxins; in scientific terms, a superantigen.  This enterotoxin binds to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells and specific V-β chains of the T-cell receptors.  This interaction between the three molecules leads to up-regulation of markers and proliferation of T-cells; additionally, it causes a massive release of proinflammatory cytokines including tumor necrosis factor (TNF), interleukins IL-1, IL-6 and interferon-gamma (INF-gamma) (1,2). SEB can form a complex with and activate T cell receptors even in the absence of MHC Class II antigens, making it a useful tool in stimulating T cells (3).

 

SEB Toxin’s Associations with Human Diseases

SEB is associated with staphylococcal food poisoning, along with TSST-1, is part of the toxic shock syndrome (4) and very likely has a role in human diseases such as atopic dermatitis (5) allergy and rhinitis (6) and the development of autoimmune diseases (7).  A mouse model to simulate Toxic Shock Syndrome has been created by exposing mice to both SEB and lipopolysaccharide (8).

Connections Between SEB Toxin and Human Diseases

Staphylococcal enterotoxin B is on the Centers for Disease Control and Prevention Select Agents & Toxins list, because of high toxicity and the potential to be aerosolized for wide dissemination; however, the quantity which a principal investigator can possess without registration is sufficient for research. Despite the toxicity and potential danger, SEB is a useful tool in research.

 

Applications of SEB in Research Studies:

  • Busbee et al (9) cultured splenocytes in 96-well plates in the presence and absence of SEB.  Supernatants were collected and analyzed for cytokine levels using ELISA kits purchased from Biolegend (San Diego, CA) for determining interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and IL-6.
  • Herter et al (10) investigated T cell movement between lymph nodes and sites of inflammation.  In this study, SEB is used extensively as a positive control, stimulating an immune response in the mouse kidney and in various cultured cells.
  • Janik and Lee (11) has used SEB in mice to develop an understanding of the inhibitory effect SEB may have on pre-existing immunity to pathogens unrelated to the superantigen.  These studies demonstrated that SEB in BALB/c mice selectively targets memory CD4 T cells.

 

References

  1. Marrack P, Blackman M, Kushnir E, Kappler J (1990)The toxicity of staphylococcal enterotoxin B in mice is mediated by T cells.J. Exp. Med. 171: 455–464.
  2. Krakauer T and Stiles BG (2013) The staphylococcal enterotoxin (SE) family: SEB and siblings Virulence 4: 759-773. PMID: 23959032
  3. Hewitt CR, Lamb JR, Hayball J, Hill M, Owen MJ, O’Hehir RE (1992) Major histocompatibility complex independent clonal T cell anergy by direct interaction of Staphylococcus aureus enterotoxin B with the T cell antigen receptor. J Exp Med. 175:1493–1499. PMID: 1588277 
  4. Kashiwada T, Kikuchi K, Abe S, Kato H, Hayashi H, Morimoto T, Kamio K et al (2012) Staphylococcal enterotoxin B toxic shock syndrome induced by community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA). Intern. Med. 51: 3085–3088. PMID: 23124156
  5. Breuer K, Wittmann M, Bosche B, Kapp A, Werfel T (2000)Severe atopic dermatitis is associated with sensitization to staphylococcal enterotoxin B (SEB). Allergy 55: 551–555. PMID: 10858986
  6. Pastacaldi C, Lewis P, Howarth P (2011)Staphylococci and staphylococcal superantigens in asthma and rhinitis:  systematic review and meta-analysis. Allergy 66: 549–555. PMID: 21087214
  7. Principato M, Qian BF (2014)Staphylococcal enterotoxins in the etiopathogenesis of mucosal autoimmunity within the gastrointestinal tract.Toxins 6: 1471–1489. PMID: 21535520
  8. Huzella LM, Buckley MJ, Alves DA, Stiles BG, Krakauer T (2009) Central roles for IL-2 and MCP-1 following intranasal exposure to SEB: A new mouse model. Vet. Res. Sci. 86:241–247. PMID: 18793785
  9.  BusbeePB, Nagarkatti M, Nagarkatti PS (2014) Naturalindoles, indole-3-carbinol and 3,3′-diindolymethane, inhibit T cell activation by staphylococcal enterotoxin B through epigenetic regulation involving HDAC expression. Toxicol Appl Pharmacol. 274: 7–16 PMID: 24200994
  10. Herter JM, Grabie N, Cullere X, Azcutia V, RosettI F, Bennett P, Herter-Sprie GS, Eylaman W, Luscinakas FW, Lichtman AH and Mayadas TN (2015) AKAP9 regulates activation-induced retention of T lymphocytes at sites of inflammation. Nature Communications6, Art. No.: 10182. PMID: 26680259
  11. Janik DK, Lee WT (2015) Staphylococcal Enterotoxin B (SEB) Induces Memory CD4 T Cell Anergy in vivoand Impairs Recall Immunity to Unrelated Antigens. J Clin Cell Immunol. 6(4):1-8. PMID: 26807307

 

Facebooktwitterlinkedinmail

Leave a Reply

Your email address will not be published. Required fields are marked *