Have a specific question about your LBP project? Click below and let’s get started.
List Labs currently has a GMP compliant version of HPT™ Lipopolysaccharide from Escherichia coli O113 in stock. What this means for you:
Get to Phase one quickly with available GMP products
Time is money. The more time spent waiting for your materials to be manufactured is time that you are not conducting your clinical trials. Contracting a manufacturer to produce GMP products can take a year or more for manufacture and release, but with a GMP compliant product in stock, you can purchase what you need when you are ready.
Help your budget with available GMP products
There are so many costs associated with research studies and clinical trials, who wouldn’t want to save a little money on their project? The expense of custom manufacturing can be steep – purchasing available GMP compliant products from List Labs can help alleviate some of those costs. Lipopolysaccharide is broadly used in many types of clinical trials such as in the study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer.1
Lipopolysaccharide currently in use in clinical trials worldwide
List Labs’ GMP compliant version of HPT™ Lipopolysaccharide from Escherichia coli O113 has already been used by organizations around the world in clinical trials. The quality of this product is proven by the successful use in Phases one through three in past or ongoing clinical trials. This unique difference sets our GMP product apart from the competition and saves you the risk of an unknown product.
Contact us today to get your GMP LPS while there’s still product in stock!
See how List Labs’ products have been used in research projects on our citations page.
Reference
By: Karen Crawford, PhD.
President, List Labs
Staphylococcal enterotoxin type B (SEB) is a powerful player in the family of toxins; in scientific terms, a superantigen. This enterotoxin binds to major histocompatibility complex (MHC) class II molecules on antigen-presenting cells and specific V-β chains of the T-cell receptors. This interaction between the three molecules leads to up-regulation of markers and proliferation of T-cells; additionally, it causes a massive release of proinflammatory cytokines including tumor necrosis factor (TNF), interleukins IL-1, IL-6 and interferon-gamma (INF-gamma) (1,2). SEB can form a complex with and activate T cell receptors even in the absence of MHC Class II antigens, making it a useful tool in stimulating T cells (3).
SEB Toxin’s Associations with Human Diseases
SEB is associated with staphylococcal food poisoning, along with TSST-1, is part of the toxic shock syndrome (4) and very likely has a role in human diseases such as atopic dermatitis (5) allergy and rhinitis (6) and the development of autoimmune diseases (7). A mouse model to simulate Toxic Shock Syndrome has been created by exposing mice to both SEB and lipopolysaccharide (8).
Staphylococcal enterotoxin B is on the Centers for Disease Control and Prevention Select Agents & Toxins list, because of high toxicity and the potential to be aerosolized for wide dissemination; however, the quantity which a principal investigator can possess without registration is sufficient for research. Despite the toxicity and potential danger, SEB is a useful tool in research.
Some papers utilizing SEB toxin are described below:
Busbee et al (9) cultured splenocytes in 96-well plates in the presence and absence of SEB. Supernatants were collected and analyzed for cytokine levels using ELISA kits purchased from Biolegend (San Diego, CA) for determining interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin-2 (IL-2), and IL-6.
Herter et al (10) investigated T cell movement between lymph nodes and sites of inflammation. In this study, SEB is used extensively as a positive control, stimulating an immune response in the mouse kidney and in various cultured cells.
Janik and Lee (11) has used SEB in mice to develop an understanding of the inhibitory effect SEB may have on pre-existing immunity to pathogens unrelated to the superantigen. These studies demonstrated that SEB in BALB/c mice selectively targets memory CD4 T cells.
References
By: Rachel Berlin, Marketing Manager
The List Labs website hosts a library of scientific article abstracts related to the research performed using our products called the Citations Page. Visitors can search this library to learn how others have used List Labs’ reagents in their research. This valuable resource is updated monthly with new articles from a wide variety of publications. Check out a few recent articles below:
Don’t see the reagent you’re interested in? You can search the citations by product, year, publication, or by the type of cell, animal, assay, protein or research. Check it out today!
By: Md. Elias, Ph.D, Senior Scientist
List Labs is one of the leading manufacturers of high quality adjuvants from bacterial sources. Our highly purified adjuvants for research and development are Tetanus Toxoid (Product #191), Cholera Toxin B Subunit (Product #104), Diphtheria Toxin CRM197 Mutant (Product #149), Adenylate Cyclase Mutant, Cya-AC– (Product #198L), Pertusis Toxin Mutant (Product #184), and LPS and its derivatives (Products #400, #401, #421, #423, #433, #434). GMP grade material is available by custom order.
In immunology, an adjuvant is a component that enhances and/or potentiates the immune responses (humoral and /or cell mediated) to an antigen and modulates it to achieve the desired immune responses. Adjuvants can be used for various reasons: (i) to enhance the immunogenicity of antigens; (ii) to reduce the amount of antigen or the number of immunizations needed for protective immunity; (iii) to improve the efficacy of vaccines in immune-compromised persons; (iv) to increase functional antibody titer; or (v) as antigen delivery systems for the uptake of antigens by the mucosa (1-3). Brief descriptions of List Labs products that have potential uses as vaccine adjuvants or immune modulators are provided below. For more details, please visit www.ListLabs.com.
Tetanus Toxoid (Product #191): Tetanus toxoid is prepared by formaldehyde inactivation of pure neurotoxin (Product #190). There are FDA approved vaccines that use a tetanus toxoid antigen to protect children and adult against tetanus such as DAPTACEL and Tripedia, and others that use it as a carrier in conjugate vaccines against various pathogens. For example, MenHibrix® is an FDA approved vaccine where tetanus toxoid has been conjugated to Neisseria meningitidis serogroup C and Y capsular polysaccharides and Hib capsular polysaccharide. Several other tetanus toxoid conjugated vaccines are in research and investigation stages such as Type III group B streptococcal polysaccharide-tetanus toxoid conjugate vaccine (4). Information on our entire family of Tetanus products can be found at https://listlabs.com/products/tetanus-toxins-&-related-products/.
Cholera Toxin B subunit (Products #103B and #104): Cholera toxin B subunit (CTB) is the cell binding domain of cholera toxin protein complex. The holotoxin consists of a single A subunit bearing ADP-ribosyl-transferase activity surrounded by five B subunits that bind to GM1 ganglioside receptors on mammalian cell surfaces and facilitate entrance of the A subunit into cells. The non-toxic CTB has been shown to be an efficient mucosal adjuvant and carrier molecule for the generation of mucosal antibody responses and/or induction of systemic T-cell tolerance to linked antigens. Due to the ubiquitous presence of the GM1 ganglioside receptor on eukaryotic cell membranes, CTB has been extensively used as a conjugate and non-conjugate vaccine adjuvant in a wide variety of model systems.
A CTB-urease conjugated vaccine has been shown to prevent infection by Helicobacter pylori, a bacterium that infects greater than 50% of world population and can cause a variety of gastrointestinal diseases (5). A series of studies have been carried out to develop CTB carrier based vaccines to prevent HIV-1 (6) and West Nile Virus infections (7). CTB has been used as a component of a skin patch for transcutaneous immunization against hepatitis B virus in a mouse model (8). Besides the adjuvant activity, recent studies show that CTB can suppress immunopathological reactions in allergy and autoimmune diseases such as Crohn’s disease (9). Information on our entire family of Cholera products can be found at https://listlabs.com/products/cholera-toxins/.
Diphtheria Toxin CRM197 Mutant (Product #149): CRM197 is a non-toxic mutant of diphtheria toxin lacking the ADP-ribosylation activity (10). CRM197 results from a naturally occuringsingle base change (glutamic acid to glycine) in the toxin gene which is immunologically indistinguishable from the native diphtheria toxin. CRM197 functions as a carrier for polysaccharides and haptens making them immunogenic (11, 12). It is utilized as a carrier to develop conjugate vaccines for diseases such as pneumococcal and meningococcal infections. MenACWY-CRM is an approved vaccine to protect adults and adolescents against disease caused by meningococcal serogroups A, C, W-135 and Y. Information on our entire family of Diphtheria products can be found at https://listlabs.com/products/diphtheria-toxins/.
Adenylate Cyclase Toxoid, Cya-AC– (Product #198L): A genetically modified adenylate cyclase toxin (ACT) lacking adenylate cyclase activity (CyaA-AC–) has been produced (13). Although the catalytic activity is destroyed, CyaA-AC– is still cell invasive and able to induce an immune response to co-administered pertussis antigens (14, 15). CyaA-AC– has been shown to promote delivering of vaccine antigens into the cytosol of major histocompatibility complex (MHC) class I antigen-presenting cells (16). CyaA-AC– has been used as a tool to deliver antigens to T-cells in anti-cancer immunotherapeutic vaccines (17, 18).
Pertussis Toxin Mutant (Product #184): List Labs produces Pertussis Toxin Mutant, a genetically inactivated form of pertussis toxin where mutations were introduced to abolish the catalytic activity of the S1 subunit while the toxin complex still retains the cell binding ability (19). A pertusis toxin mutant has been used as an adjuvant or as a carrier to promote an immune response. These studies indicated that pertussis toxin mutant possesses adjuvant properties with the ability to encourage both local and systemic responses, to promote T helper cell responses to co-administered antigens and to favor the production of Th1/Th17 cells, important in mediating host immunity to infectious pathogens (20). Pertusis toxin binds to the cell receptor, TLR4 which activates Rac and subsequently causes various effects depending on the type of cell treated (21). The toxin or binding oligomer induces dendritic cell maturation in a TLR4-dependent manner (22). Information on our entire family of Pertussis products can be found at https://listlabs.com/products/pertussis-toxins-&-virulence-factors/.
LPS and its derivatives: List Labs provides LPS and various derivatives: highly purified HPTTM LPS from Escherichia coli O113 (Product #433); Ultar Pure Escherichia coli O111:B4 LPS (Product #421); Escherichia coli O55:B5 LPS (Product #423); Ultra pure LPS from Salmonella Minnesota R595 (Product #434); Lipid A Monophosphoryl from Salmonella Minnesota R595 (Product #401) and highly purified HPTTM LPS from Bordetella pertusis strain 165 (Product #400). For other LPS products please go to our product website. These LPS products are widely used as vaccine adjuvants and immune stimulators.
LPS is a potent stimulator of the vertebrate innate immune system mediated by macrophages and dendritic cells and generates a rapid response to infectious agents. Structural patterns common to diverse LPS molecules are recognized by Toll-like receptors (TLR) and accessory proteins in serum. LPS released from bacterial membranes is bound to LPS binding protein (LBP) in serum, transferred to CD-14, an LPS receptor glycoprotein, and presented to the TLR-4-MD-2 complex, stimulating production of cytokines. LPS has a wide range of uses in research and drug development. It may be used to stimulate immune cells and investigate the innate immune responses. In drug development, structurally modified LPS forms, such as monophophoryl lipid A (MPLA) have been used as adjuvants in a wide range of vaccine formulations. MPLA, a TLR4 agonist has been formulated with liposomes, oil emulsions, or aluminium salts for several vaccines such as malaria vaccine (known as RTS,S) that is comprised of MPLA and a detoxified saponin derivative, QS-21 (3). Information on our entire family of Lipopolysaccharides can be found at https://listlabs.com/products/lipopolysaccharides/.
List Labs specializes in producing high quality adjuvants for vaccine development and is interested in partnering with others on new projects. See some of our special projects or contact us for more information.
By:
Karen Crawford, Ph.D., President
Eva Purro, Director of Quality Assurance
Dom C. Ouano, Marketing
While most of List Labs’ products are intended as research reagents (Research Grade), several can be produced as GMP products for use in humans. Below are key differences between the two.
Research Only VS Preclinical/Clinical/Human Use
Reagent grade products for research only are labeled “not for human use” but are produced using good laboratory practices. These reagents are readily available on our website and any quantity can be purchased. Products intended for human use are produced under cGMP (current Good Manufacturing Practices, see the Code of Federal Regulations 21 CFR 211) and are provided to clients with a customized contract.
cGMP = Higher Production Standards
Producing compounds under cGMP regulations is a more costly process compared to reagent grade. cGMP compliance includes all aspects of production: documented training programs, QA issued production records, dedicated production suite preparation, testing and release of raw materials, analytical method qualification dedicated supplies, and validated cleaning methods. In addition, a Drug Master File may be submitted to the FDA, which can be cross referenced by our GMP customers.
See more about our cGMP production capabilities.
One example of a product produced as both reagent grade and GMP grade is HPT™ E. coli O113 LPS. Although a chemist may not be able to tell the difference between the reagent grade and the cGMP material, the difference is in the compliance to the GMP’s as described above. Our reagent grade material is produced with good laboratory procedures, however it is not compliant to GMP. Consequently, reagent grade E. coli LPS is not for human use and cGMP LPS may be applied “for human use” per FDA approval. cGMP for human use is not so much a property of the E.coli LPS as it is describing the environment and procedures surrounding the preparation of the compound.
For example….
Our LPS from E. coli O55:B5 or E.coli O113, Products #203, #423 and #433, are reagent grade products and are often used in research, particularly for inducing the maturation of Dendritic Cells.
We also provide cGMP LPS from E.coli O113 on a contract basis, which is made compliant to GMP and is appropriate for FDA approved use in humans.
Learn more about special projects including bulk drug substance & active pharmaceutical ingredient development, we have developed in partnership with our clients or contact us with any further questions or inquiries regarding this or any of our other products and services.